Fibroblasts in vitro can acquire myofibroblast phenotype by the development of several biochemical and morphological properties of smooth muscle cells, particularly the expression of alpha-smooth muscle actin. These cells play a major role in inflammatory responses and in wound repair through their production of growth factors, cytokines, and other soluble mediators. Lipid bodies (LB) are lipid-rich cytoplasmic inclusions and have been recognized as specialized intracellular domains involved in the formation of paracrine mediators of inflammation. The aim of the present study was to investigate the occurrence and distribution of LB during differentiation of rat fetus skeletal fibroblasts into myofibroblasts in vitro. Primary cultures of fibroblasts were obtained from skeletal muscles of 18-d-old Wistar strain rat fetus by enzymatic dissociation. At 1–7 d, the cells were stained with Nile red vital dye to identify LB and then observed under a Zeiss CLSM-310. Our results showed that there was an accentuated increase in the number of LB during the differentiation of skeletal fibroblasts into myofibroblasts and that these inclusions were scattered at the cytoplasm.